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Steady=unsteady aerodynamic analysis of wings at subsonic, sonic
and supersonic Mach numbers using a 3D panel method
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SUMMARY

This paper treats the kernel function of an integral equation that relates a known or prescribed upwash
distribution to an unknown lift distribution for a �nite wing. The pressure kernel functions of the
singular integral equation are summarized for all speed range in the Laplace transform domain. The
sonic kernel function has been reduced to a form, which can be conveniently evaluated as a �nite limit
from both the subsonic and supersonic sides when the Mach number tends to one. Several examples
are solved including rectangular wings, swept wings, a supersonic transport wing and a harmonically
oscillating wing. Present results are given with other numerical data, showing continuous results through
the unit Mach number. Computed results are in good agreement with other numerical results. Copyright
? 2003 John Wiley & Sons, Ltd.

KEY WORDS: frequency-domain panel method; kernel function; Prandtl–Glauert factor; Ackeret factor;
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1. INTRODUCTION

An important problem for aeroelastic analysis is to evaluate the pressure distribution of a
wing in unsteady motion. The classic solution approach to the unsteady compressible �ow
problem has been through the use of lifting surface theory. The improvements in computational
hardware capabilities in recent years makes it no longer the method of choice, even for
preliminary design, the lifting surface theory still has its wide applications for the unsteady
aerodynamic analysis of wings and propellers.
The kernel function technique has been used widely. K�ussner [1, 2] derived the governing

integral equation from the doublet of the acceleration potential for calculating the unsteady
pressure distribution on a thin �nite wing. The kernel function formulation relates a known or
prescribed downwash distribution to an unknown load distribution for a �nite wing in unsteady
motion. The method has the advantage that it deals with the pressure di�erential and induced
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velocity of interest directly. Landahl [3, 4] derived a compact form for the formulation of the
kernel function for general con�gurations in unsteady subsonic �ow. Harder and Rodden [5]
also formulated kernel functions for non-planar surfaces in supersonic �ow. These pressure
kernel functions led to advent of the doublet point method (DPM) [6–9], that uni�ed subsonic
[6] and supersonic �ows [7]. The subsonic and supersonic DPMs can be combined into one
code since they di�er only in the kernel function [9]. The DPM is an extension of the doublet
lattice method (DLM) [10, 11]. The DPM is much simpler than the DLM. Furthermore, the
method is exact in the sense that no approximation is made to the procedure of obtaining the
Laplace transform. According to Eversmann and Pitt [12], their numerical test results showed
that the DPM results show a severe discrepancy for unequal spacing strips because a pivotal
calculation in the method is valid only if the strip widths are constant. Eversmann and Pitt
[12] suggested the use of a hybrid scheme in which the best features of the doublet lattice
method and the doublet point method are combined.
The present method is based on a compressible unsteady panel method for predicting gener-

alized force transfer functions for non-planar lifting surfaces developed by Cho and Williams
[13, 14]. They applied this method to wings with various shapes and obtained good results.
Their scheme resembles the ‘doublet point method’ of Ueda and Dowell [6, 7]. However,
since the point approximation is applied only to non-singular quantities, no special care need
be exercised near singularities. Any steady panel code could easily be modi�ed to include
unsteady e�ects, simply by multiplying the in�uence coe�cients by appropriate phase factors.
Although the lifting surface theory should be continuous through all Mach numbers, few

studies have been made in the sonic range. Beyond that the unsteady airloads are of importance
to aeroelasticians in the transonic �ow speed. In the two-dimensional case, the e�ects of
compressibility may be obtained from results of incompressible theory with correction factors
applied such as the well-known Prandtl–Glauert factor in subsonic �ow. The Prandtl–Glauert
or Ackeret rules for variation of pressure coe�cient with freestream Mach number in the
subsonic and supersonic �ow are clearly invalid for Mach numbers near one.
Recently, Ueda [15] clarify the �nite continuity of the non-coplanar kernel functions for

steady �ow at sonic Mach number. In the early 1950s, Runyan and Woolston [16] developed
an integral method for determining the unsteady loads on a �nite wing in subsonic �ow
including the limiting case of sonic �ow.
The purpose of the present study is to de�ne the kernel function of the singular integral

equation developed by Cho and Williams [13, 14] for all speed ranges and to clarify the
�nite continuity of steady and unsteady �ow when the Mach number equals to one. The new
method is veri�ed by showing that it produces results that are in good agreement with both
steady results of Ueda [15] and unsteady ones of Runyan and Woolston [16]. The continuity
of unsteady �ow at sonic Mach number was not veri�ed by Ueda [15].

2. FREQUENCY-DOMAIN PANEL METHOD

2.1. Formulation

Consider an initial value problem for linearized compressible �ow in which the initial distur-
bances vanish away from the lifting surfaces. For the load P at a point on a lifting surface x0
with unit normal n0, a transformed pressure di�erential �p=�∞U∞P is assigned acting in
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the direction +n0 (We will assume that n0 has no component in the freestream or x direction.
The �ow has speed U∞, density �∞ and Mach number M). The lifting surface induces a
transformed velocity at an arbitrary point x, in an arbitrary direction n, which is given by an
integral over the lifting surface.

w(x)=
∫ ∫

K(x;x0)P(x0) dS (1)

The kernel is the fundamental solution of the reduced wave equation corresponding to the
velocity w induced at x by a point load applied at x0. In the standard problem, w is speci�ed
on the surface and we solve for the load P. The integral is discretized, for simplicity, by a
piecewise constant approximation.

[w]= [C][P] (2)

where C is the integral of K over each panel, and P is to be thought of as a vector of loads
on all panels. The problem then is to develop e�cient methods for evaluating the coe�cients
C, with accuracy consistent with the discretization errors in Equation (2).
The unsteady non-planar kernel K can be abbreviated as (see Figure 1, Table I and

Reference [17])

K = �KpK0 +Dn0 · �Kp0 (3)

where �=(y − y0)j + (z − z0)k. The quantities Kp0 and K0 are the steady planar and non-
planar kernels, respectively. These functions are singular in the axis �=0; X =(x − x0)¿0.

Figure 1. Non-planar lifting surface: (a) surface and panel geometry, (b) coordinate system.
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Table I. Non-planar kernel functions.

Kernel functions Kp
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]
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Figure 2. Quadrilateral panel.

In supersonic �ow, there will be no disturbance to the �ow ahead of the rearward facing
Mach lines which originate at the leading most point of the lifting surface. Beyond that, the
kernel functions are singular on the Mach cone emitted from the doublet point [13].
The factor �Kp is the ratio of the unsteady to steady planar kernels. The coe�cient D is

given in terms of derivatives of �Kp

D= n ·
(
i
@
@X

+ ^1
�
@
@�

)
�Kp (4)

where X = x − x0. Note that in steady �ow, �Kp=1 and D=0. The important point is that
�Kp is a regular function and can therefore be treated as nearly constant over the quadrilateral
panel (illustrated in Figure 2), while its derivatives can be evaluated by �nite di�erences.
Therefore, the in�uence coe�cient C is approximated by

C= �KpC0 +DCp0 (5)

where C0 and Cp0 are the steady non-planar and planar in�uence coe�cients, respectively,
which can be evaluated analytically. The unsteady factor �Kp and D are evaluated at only one
point on the panel.
�Kp depends only on relative axial and radial separations X and � (which are relative distance

between a �eld point and a panel point), as well as the Mach number and the scaled complex
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Figure 3. Wing co-ordinate system.

Laplace variables �s= s=U [17, 18]. Since the function is non-dimensional, it must depend only
on the products �sX and �s� [17]. In the current work we take it to be

�Kp= �Kp(sx; sy;M;�) (6)

where sx= | �s|X and sy= | �s|�, and � is the argument of �s. The range of sx and sy are set by
the largest desired magnitude of �s and the geometry of the body. This range is determined
a priori, and the function �Kp is then tabulated on a rectangular grid covering the range, with
a grid density which is somewhat �ner than the resolution of the panelling that is to be
used. Values of �Kp and its derivatives are then found by interpolation in the table when the
in�uence coe�cient matrix is computed. The advantage of this scheme is that the number
of kernel evaluations scales with the number of panels, rather than with the square of the
number of panels as would be the case if the evaluations were done as needed. Furthermore,
the table does not need to be reconstructed for any values of �s with smaller magnitude than
that used to de�ne the table. This table is reconstructed only when M , � or the geometry is
modi�ed.

2.2. Kernel function

In this section, the kernel function introduced in Equation (3) is de�ned. Let � be 0 if M¡1
and 1 if M¿1. For a planar wing lying in x–y plane (see Figure 3), the steady planar kernel
is

Kp0 =
	
4�R

(7)
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where

R2 = X 2 + �Y 2

� = 1−M 2

	 =
(1 + �)X + (1− �)R

Y 2

When M¿1 and X¡0 it is better to use the equivalent expression, 	=�=(R− X ), which is
regular at �=0.
The steady non-planar kernel can be expressed simply as

K0 = n · ∇(n0 · ^Kp0) (8)

The supersonic kernel is de�ned as 0 for any point outside the downstream Mach cone from
the load point. The unsteady factor �Kp is

�Kp=
E[M (E− + �E+) + RB]

	
(9)

where

B=
∫ �−

�+
exp( �s�)=(�2 + �2)3=2d�; (1−M 2)�=X −M

√
X 2 + ��2

E = exp(− �sX )

E± = exp(�s�±)=R±

R± = sqrt[�2 + (�±)2]

�− = (X −MR)=�

�+ =
{
(X +MR)=� if M¿1
−∞ if M¡1

Although �Kp is non-singular, it does need special treatment along certain lines of removable
singularity. Speci�cally, �Kp = E on �=0; X¿0. Furthermore, in supersonic �ow, the de�nition
outside the downstream Mach cone is somewhat arbitrary. To maintain some continuity for
panels which straddle the Mach cone, we take �Kp= exp(�sXM=�2) at all points outside the
Mach cone (this being the value on the cone at the same X ). This eliminates sensitivity to
whether the evaluation point on the panel happens to fall just within, or just without, the zone
of dependence of the control point.
Note that �Kp is continuous everywhere in the complex s-plane when M¿1. To de�ne B,

and therefore the solution, in Re(s)¡0 for subsonic �ow, we make use of a simple analytic
continuation. Let B(a1; a2) denote the integral with lower and upper limits a1 and a2. Clearly,
then

B(−∞; �−)=B(−∞;−b) + B(−b; �−)=B0 + B1 (10)
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where b is any positive real number, and B0 and B1 are the in�nite and �nite parts, respectively.
The second term, B1 is analytic but the �rst term, B0 is not de�ned in Re(s)¡0. Since B0
has real support, it is su�cient to consider its continuation for Im(s)¿0. The integrand has
a branch cut along −�¡Im(v)¡� on the imaginary v axis, and vanishes exponentially in
the left-half v plane. Therefore, as long as b¿0, the integration path can be turned from
(−∞;−b) to (−b;+i∞). The result is

B0 =
∫ ∞

0
e−� dr (11)

where

� = (b− ir) �s+ 3
2
ln A+ i

(�− 3	)
2

A= [(b2 + �2 − r2)2 + (2br)2]1=2

	= cos−1[(b2 + �2 − r2)=A]

r =
√
x2 + �(y2 + z2)

Note that B0 is a function only of radius �, and so can be computed and stored once over the
range of possible radii. Values for speci�c panel and control point combinations are obtained
by interpolation. The constant b is chosen to be approximately �max, the largest radius of the
con�guration. All integrals (B0 and B1 in subsonic or B in supersonic �ow) are computed by
numerical quadrature, using a scheme that is exact for s=0.

2.3. Continuity at sonic �ow

The pressure kernel functions are shown in Table I. The steady kernel function can be obtained
by putting �s=0 in the unsteady kernel function in Equation (3). If the parameters,

R±=sqrt[�2 + (�±)2] (12)

are de�ned, the right-hand side of the steady kernel function in subsonic �ow can be integrated
analytically.

B=
∫ �−

−∞

d�
(�2 + �)3=2

=
1
�2

(√
�−

�2− + �2
+ 1

)
=

1
R−(R− − �−) (13)

Then the steady kernel function in subsonic �ow can be written as shown in Table II. The
right-hand side of the steady kernel function in supersonic �ow can be integrated analytically
in the same manner as the kernel function in subsonic �ow. It is di�cult to tell whether
they are continuous at sonic �ow from the forms of the kernel function shown in Table II.
Therefore, if the parameters

�±=(x ±MR)=� (14)

are de�ned, we can obtain the simpler form of the steady kernel functions as shown in
Table III.
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Table II. Steady non-planar kernel functions.

Kernel functions Kp0

M¡1
1
8�

[
M
RR−

+
1

R−(R− − �−)
]

M¿1
1
8�

[
M
RR−

+
M
RR+

+
1
�2

(
�−
R−

− �+
R+

)]

Table III. Continuity at sonic �ow.

Kernel functions M¡1 M =1 M¿1

Kp0
R+ X
8�R�2

1
4��2

X
4�R�2

Considering the limit

lim
M→1

R= |X | (15)

we can obtain the continuity of each kernel function listed in Table III.

3. RESULTS AND DISCUSSION

The lift curve slope, CL
 , is one of the important characteristics of the wing. Normally, wings
with large aspect ratio have relatively steep lift curves with clearly de�ned maximum values.
In contrast, wings with a low aspect ratio show the opposite behaviour. Wings with a low
aspect ratio therefore require higher angles of attack to produce a particular lift than wings
with a high aspect ratio. The lift curve slopes become greater with increasing aspect ratio.

3.1. Steady results

In Figure 4, the convergence behaviour of lift curve slopes for a rectangular wing with aspect
ratio of 5 at zero Mach number and 11:4◦ angle of attack is shown for the variation of span
and chordwise panel numbers. An experimental result of Theil and Weissinger [19] is also
plotted in the �gure for comparison. The panels are constructed as quadrilaterals with side
edges parallel to the �ow. The control points are �xed along the midspan, at 85% local chord.
This choice optimizes convergence rates with panel re�nement. It can be seen in the �gure
that the agreement between the present method and experimental data is encouraging when
20 by 20 panel numbers is used for the prediction.
In Figure 5, to validate the present method for rectangular wings with various aspect ratios,

results of the present analysis are compared with those of Ueda [15] which are based on
DPM. Six chordwise and 16 spanwise panels are used for the present calculation whereas
Ueda [15] used 20 chordwise square panels. As can be seen in the �gure, the present results
agree well with those of Ueda [15]. In the �gure, the lift curve slope becomes greater with
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NX
0 5 10 15 20

2
4
6
10
20

C
L

α

2π

4π 

π 

/3

5π/3

NY

Solid line: 4.17 Theil and Weissinger[Experiment]
symbol( ): 4.14 Present Method[20×20 panel numbers]

Figure 4. Lift curve slope convergence with respect to the number of panels for a
rectangular wing with an aspect ratio of 5 at M =0 and 
=11:4◦ (NX: chordwise

panel numbers, NY: spanwise panel numbers).
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Figure 5. Lift curve slope of rectangular wings.

increasing Mach number in the range M¡1. At Mach numbers between 1.0 and 1.1 the lift
curve slope reaches its highest value.
To clearly demonstrate the continuity of the numerical solutions near sonic conditions,

further re�ned calculations have been carried out around sonic point. The detailed results in
the transonic �ow are shown in Figure 6. As seen in the �gure, it can be concluded that the
numerical values obtained by the present panel method are continuous at the sonic point.
The lift curve slope convergence for an untapered 45◦ swept wing at the sonic �ow point

is shown in Figure 7. The wing has the same aspect ratio of 5 as for the case in Figure 4.
It can be easily seen from the �gure that �ve chordwise and 10 spanwise panels are enough
for the calculation of the lift curve slope of a swept wing as in the case of the rectangular
wing in Figure 4.
Figure 8 compares the lift curve slopes vs Mach number for three swept wings calculated

by the present method with the results of Ueda [15]. The wings have the same aspect ratio
of 4 and a leading edge sweep back angle of 45◦ with di�erent taper ratios. Ten chordwise
and 28 spanwise panels are used for the present calculation. As can be seen in the �gure, the
present results are in good agreement with those of Ueda [15] as in the case of rectangular
wings.
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Figure 6. Detailed �gure of Figure 5 at M =1.

Figure 7. Lift curve slope convergence with respect to the number of panels for an untapered 45◦ swept
wing at M =1 (NX: chordwise panel numbers, NY: spanwise panel numbers).

Figure 9 compares the lift curve slopes vs Mach number for a supersonic transport wing
by the present method to the results of Ueda [15]. The wing has an aspect ratio of 1.09 and
a span of 0.98. The explicit speci�cation of the wing can be found in Figure 9. The wing is
discretized with �ve chordwise and 28 spanwise panels. It can be seen in the �gure that the
present results agree well with those of Ueda [15] and the numerical results are continuous
at the sonic �ow point.

3.2. Unsteady results

For the lack of three-dimensional unsteady results including the sonic �ow point to compare,
present results are validated by comparing the calculated results with those by the surface-
loading method of Runyan and Woolston [16]. Runyan and Woolston [16] calculated the
e�ect of Mach number on the aerodynamic characteristics of �nite wings for a range of Mach
numbers up to and including M=1. They extended the subsonic kernel function method to the
Mach one using the concepts of Falkner [20]. The results at supersonic speeds were obtained
from Nelson et al. [21].
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Figure 8. Lift curve slope vs Mach number for 45◦ swept wings with AR=4.
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Figure 9. Lift curve slope of a supersonic transport wing.
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Figure 10. Co-ordinate system for the pitching motion.

Figure 10 shows the co-ordinate system for a wing in pitching motion at an angle of
attack. The calculations have been carried out for a rectangular wing with aspect ratio of 2
and reduced frequency of 0.22 based on the semichord length. In the present calculation, the
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Figure 11. The unsteady lift curve slope of a rectangular wing oscillating in pitch about its
mid-chord: (a) Magnitude, (b) phase angle.

wing is discretized with 30 chordwise and 20 spanwise panels. The point of evaluation of
the unsteady factors has been set at the panel centroid. A better choice is the centroid of the
generalized area, which would reduce the quadrature errors, especially for a panel containing
singularities.
Figure 11 presents a comparison of the unsteady lift curve slope as calculated by the present

method and that of Runyan and Woolston [16]. The magnitude of the lift curve slope, |CL
 |,
and the corresponding phase angles of the lift curve slope, �CL
 , with the change of Mach
number are shown in the �gure. It can be seen from the �gure that the present result agrees
well with that of Runyan and Woolston [16] except for the slight di�erence in the magnitude
of the lift curve slope for the low supersonic �ow speed.
One essential requirement for the �utter calculation is to predict the moment accurately

[16]. Figure 12 presents a comparison of the pitching moment curve slope as calculated by
the present method and that of Runyan and Woolston [16]. It can be seen from the two
�gures that the present result agrees well with that of Runyan and Woolston [16] except for
the slight di�erence in the phase of the moment curve slope for the transonic speeds. The
present results for unsteady motions are meaningful when the maneuver presents a certain
degree of unsteadiness, and low-amplitude motion [22]. The present results show that present
method can constitute a continuous bridging in the results from subsonic through transonic
to supersonic speeds [23]. As shown in Figures 11 and 12, the compressibility e�ect on
the lift and moment can be approximately predicted by use of the factor 4

√
1−M 2 up to
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Figure 12. The unsteady moment curve slope of a rectangular wing oscillating in pitch about its
mid-chord: (a) Magnitude, (b) phase angle.

M =0:7 [16]. The magnitudes of the lift and moment increase around M =1 and then decline
at supersonic speed [16]. As discussed, the numerical results of Runyan and Woolston [16]
agree well with the calculated results by the present method except for slight di�erences.
This is remarkable, since the results of Runyan and Woolston [16] were obtained by hand
evaluating few unknowns in the 1950s whereas the present method uses the modern computers.

4. CONCLUSION

The sonic kernel in steady or unsteady �ow has been reduced to a simple form as a �nite
limit from both the subsonic and supersonic sides when the Mach number tends to one. For
all speed ranges in the Laplace domain, the pressure kernel functions of the singular integral
equation are de�ned, and their continuity at the sonic �ow speed is veri�ed.
The comparison of the present steady results with those of DPM shows the possible appli-

cation of the present method to the airload calculations for all Mach numbers including the
sonic point. For the lack of available unsteady results in the transonic �ow speed to com-
pare, the results for the pitching wing are compared to the other integral results. The good
agreement validates the usefulness of the present method in evaluating unsteady aerodynamic
performance parameters. The present method has the limitation on application to the thick
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wing in the �ow range near M=1 where the �ow non-linearity due to the thickness plays an
important role.
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